Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton.

نویسندگان

  • Ehsan Y Davani
  • Delbert R Dorscheid
  • Cheng-Han Lee
  • Cornelis van Breemen
  • Keith R Walley
چکیده

ICAM-1 mediates interaction of cardiomyocytes with the extracellular matrix and leukocytes and may play a role in altering contractility. To investigate this possibility, rat ventricular cardiomyocytes were activated using TNF-alpha, IL-1beta, or LPS, washed, cultured with quiescent rat polymorphonuclear leukocytes (PMNs) for 4 h, and electrically stimulated to determine fractional shortening. PMNs cultured with activated cardiomyocytes reduced control fractional shortening of 20.5 +/- 0.7% by -2.8 +/- 0.3% per adherent PMN (P < 0.001). Fixing PMNs with paraformaldehyde or glutaraldehyde did not prevent PMN-mediated decreases in cardiomyocyte fractional shortening. However, PMN adherence and decreased fractional shortening were prevented by anti-ICAM-1 and anti-CD18 antibodies. Reduced fractional shortening was reproduced in the absence of PMNs by ICAM-1 binding using cross-linking antibodies (reduced by 36 +/- 3% from control, P < 0.01). Immunofluorescent staining demonstrated increased cortical cytoskeleton-associated focal adhesion kinase expression after ICAM-1 cross-linking, suggesting involvement of the actin cytoskeleton. Indeed, disruption of F-actin filament assembly using cytochalasin D or latrunculin A did not prevent PMN adherence but prevented decreased fractional shortening. Inhibition of the cytoskeleton-associated Rho-kinase pathway with HA-1077 prevented ICAM-1-mediated decreases in cardiomyocyte contractility, further suggesting a central role of the actin cytoskeleton. Importantly, ICAM-1 cross-linking did not alter the total intracellular Ca2+ transient during cardiomyocyte contraction but greatly increased heterogeneity of intracellular Ca2+ release. Thus we have identified a novel regulatory mechanism of cardiomyocyte contractility involving the actin cytoskeleton as a central regulator of the normally highly coordinated pattern of sarcoplasmic Ca2+ release. Cardiomyocyte ICAM-1 binding, by PMNs or other ligands, induces decreased cardiomyocyte contractility via this pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibrinogen decreases cardiomyocyte contractility through an ICAM-1-dependent mechanism

INTRODUCTION Cardiomyocytes exposed to inflammatory processes express intracellular adhesion molecule-1 (ICAM-1). We investigated whether fibrinogen and fibrinogen degradation products, including D-dimer, could alter cardiomyocyte contractile function through interaction with ICAM-1 found on inflamed cardiomyocytes. METHODS In vivo, rats were injected with endotoxin to model systemic inflamma...

متن کامل

Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts

Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in f...

متن کامل

Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2.

BACKGROUND Toll-like receptors (TLRs) are expressed on cardiomyocytes and recognize pathogen-associated molecular patterns. Whether endogenous molecules produced by tissue injury (damage associated molecular patterns, DAMPs) can induce cardiomyocyte inflammation via TLR signalling pathways and/or reduce cardiomyocyte contractility is unknown. METHODS AND RESULTS Primary cardiomyocytes isolate...

متن کامل

Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response.

OBJECTIVE The transmembrane receptor family of Toll-like receptors (TLRs) may play a role in initiating early inflammatory and functional responses to danger signals arising from ischemia-reperfusion and inflammatory stimuli. We determined whether Toll-like receptors are expressed in cardiac tissue and whether stimulation with cognate ligands would result in a pro-inflammatory response and decr...

متن کامل

p21-Activated kinase-1 and its role in integrated regulation of cardiac contractility.

We review here a novel concept in the regulation of cardiac contractility involving variations in the activity of the multifunctional enzyme, p21-activated kinase 1 (Pak1), a member of a family of proteins in the small G protein-signaling pathway that is activated by Cdc42 and Rac1. There is a large body of evidence from studies in noncardiac tissue that Pak1 activity is key in regulation of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 3  شماره 

صفحات  -

تاریخ انتشار 2004